Contribution of Bed Shear Stress and Vegetative Drag to Hydraulic Resistance of Vegetated Flows

Anupam Ghosh¹ and Kaushik Bandyopadhyay²

¹Student, Department of Construction Engineering, Jadavpur University, Kolkata ²Department of Construction Engineering, Jadavpur University, Kolkata E-mail: ¹anupamghosh91@gmail.com, ²kb@const.jusl.ac.in

Abstract—The objective of this paper is to investigate the contribution of bed shear stress to the overall flow resistance for vegetated flows. Drag forces acting on up to 10 flexible vegetation elements were measured directly and simultaneously with specifically designed drag force measurement sensors in laboratory experiments. The measurements were carried out for three different vegetation densities, two vegetation patterns, and mean flow velocities ranging from 0.1 to 0.7 m /s, and just submerged flow conditions. Existing relationships for the hydraulic resistance of vegetated flows are tested and the significance of plant specific parameters such as streamlining is highlighted.

Keywords: Vegetation; Flow Resistance; Bed Shear Stress.

1. INTRODUCTION

The ecosystems of riparian zones have high levels of biodiversity and the growing awareness of the ecological importance of these zones has resulted in the objective to maintain the functionality of channel and floodplain ecosystems. Riparian vegetation is an integral part of these ecosystems covering a wide range of conditions from highly flexible low grass to dense bushes to trees with rigid stems. However, vegetation increases flow resistance, changes backwater profiles, and modifies sediment transport and deposition. Hence, vegetation also plays a key role for flood risk assessment and sediment transport studies. Thus, it is indispensable to develop sustainable river management strategies which are in accordance with both flood plain management and ecology. The key to developing such strategies is the identification and assessment of physical processes dominating the complex interaction between water flow and vegetation.

Based on the superposition principle (Yen, 2002) it is possible to distinguish between the contribution of surface friction and form drag to total flow resistance. Considering steady uniform flow in a control volume with unit width and equating the driving force (downslope weight component of the water in the volume) with the resisting force of the bed and the vegetation elements yields (Petryk & Bosmajian, 1975):

$$\rho ghS = \tau_0' + \frac{\langle F_D \rangle}{a_x a_y} \tag{1}$$

where ρ = water density,

g = gravitational acceleration,

h = flow depth,

S = slope,

<F_D>= spatially averaged plant drag force,

 $\tau_0' =$ bed shear stress,

and a_x , $a_y =$ longitudinal and transversal spacing of the vegetation elements, respectively. Note that in Eq.(1) the canopy porosity has been neglected. The vegetative drag acting on a single element is usually defined as

$$F_D = \frac{1}{2}\rho C_D A_P u_c^2 \tag{2}$$

where CD = drag coefficient, A_p = plant projected area, and u_C = characteristic approach velocity. The use of this formulation is straightforward for simple-shaped rigid objects such as cylinders. However, for complex-shaped natural vegetation CD and A_p are difficult to determine.

Within a canopy the application of Eq.(2) becomes even more complicated as the approach velocity is not the undisturbed one.

A further problem is associated with the estimation of the drag coefficient C_D . In many studies, C_D -values have been used which were determined in experiments with single isolated stems (or cylinders) as a function of stem Reynolds number. However, these C_D -values are not appropriate for natural flexible vegetation elements and depend on the definition of plant projected area and approach velocity. Furthermore, the flow structure in a canopy differs substantially from the flow structure around a single isolated

element as wake flow and sheltering effects dominate the flow pattern.

Methods for the calculation of the drag coefficient for arrays of cylinders have been developed by Tanino & Nepf (2008) showed that the drag coefficient CD of rigid rods decreases in canopy flows monotonically with the local stem Reynolds number due to sheltering effects. This finding is in contrast to the classical behaviour of an isolated cylinder for which the drag coefficient reaches a plateau for stem Reynolds numbers \geq 1000.

The main objective of this paper is to investigate the spatial variability of drag forces within a canopy composed of flexible elements. Based on preliminary results from specifically designed experiments, the spatial drag force variability will be discussed with regard to the canopy pattern. The data will also be used to assess bed shear stress contribution to overall resistance and to test approaches found in the literature for estimating flow resistance within canopies.

2. EXPERIMENTAL SETUP

Experiments were carried out in a 32 m long, 0.6 m wide and 0.4 m deep tilting flume in the laboratory of the Department of Construction Engineering, Jadavpur University, Kolkata, India. In the experiments, the discharge Q was controlled by a valve and measured by an inductive flow meter. Water depth in the flume was adjusted by a tailgate located in a distance of 25 m to the flume inlet. Ten piezometers installed along the flume allowed for water level measurements. These measurements were used to calculate water surface slope from linear regression and water depth h. The latter was obtained by subtracting the local flume tilted around its downstream end. The bed rough-ness consisted of a rubber mat with 3 mm high pyramidal shaped roughness elements.

In order to ensure fully developed canopy flow conditions, the canopy was constructed with a total length of 18.5 m starting at a distance of 6 m from the flume inlet. The canopy consisted, depending on the investigated plant pattern, of up to 450 identical artificial poplars. The 23 cm high artificial plants (see Fig. 1), described in detail in Schoneboom & Aberle (2009), are composed of a 3 mm thick coated wire stem, a blossom, and four branches with three leaves each. The leaves are made of fully flexible dyed textile and the single sided leaf area varies between 14.32 to 57.6 cm^2 with a total cumulative leaf area of 373.57 cm^2 . It is worth mentioning that the results described in Schoneboom et al. (2008) indicate that the flexural rigidity of the artificial poplar is similar to its 'natural' counterpart. The artificial plants were used to ensure that the plant characteristics do not change during the experiments.

The experiments were carried out with both in- line (L) and staggered (S) canopy arrangements and three different

vegetation densities of 11.1, 25, and 44.4 plants/m² (spacing between plants $a_X/a_V = 0.3/0.3$ m, 0.2/0.2 m, and 0.15/0.15 m, respectively). Fig. 2 provides an overview of the investigated vegetation patterns in the 1.5 m long test section which is located at a distance of 15.1 m to the flume inlet. In case of the densest vegetation pattern, the canopy length was reduced to a total length of 10 m starting at a distance of 10 m from the flume inlet due to the limited number of available vegetation elements. For the staggered pattern, some plants had to be placed close to the flume wall (Fig. 2). Thus, to ensure a constant plant density and a homogeneous leaf mass distribution six of the twelve leaves were removed from these plants. In addition, the plant blossom was removed from every second 'half-plant'. The additional stem in every other row affects the overall flow resistance only marginally due to the low stem diameter of 3 mm (Schoneboom & Aberle, 2009).

Fig. 1: Setup of DFS test section and artificial poplars un- der flow action.

Drag forces exerted on the vegetation elements were measured with up to 10 drag force sensors (DFS) described in Schoneboom et al. (2008). The DFS were mounted in a box below the flume bottom in the test section (Fig. 1). This setup ensured that the DFS did not disturb the flow and that they could be easily rearranged to match the corresponding plant patterns. The vegetation elements attached to the DFS are highlighted in Fig. 2 for each setup (light gray elements).

In contrast to the DFS setup described in Schoneboom et al. (2008), the sampling rate was reduced to 200 Hz in the present experiments. For the measurements, the DFS were synchronized and drag forces were recorded for a sampling interval of 60s. Each measurement was repeated two times. These repeating experiments showed a high degree of reproducibility. Furthermore, a preliminary time series analysis showed that the mean value of the drag forces became, in general, stable after a sampling time of 30 s

(not shown here) indicating that the sampling time of 60 sec was sufficient.

Fig. 2: Vegetation setup in the measurement section (top view). Left side staggered; Right side in-line. Lateral and horizontal spacing in top-down direction 30, 20, 15 cm. Vegetation elements highlighted in grey were attached to DFS.

In contrast to the DFS setup described in Schoneboom et al. (2008), the sampling rate was reduced to 200 Hz in the present experiments. For the measurements, the DFS were synchronized and drag forces were recorded for a sampling interval of 60s. Each measurement was repeated two times. These repeating experiments showed a high degree of reproducibility. Furthermore, a preliminary time series analysis showed that the mean value of the drag forces became, in general, stable after a sampling time of 30 s (not shown here) indicating that the sampling time of 60 sec was sufficient.

All experiments were carried out with steady uniform and just submerged flow conditions. In order to achieve these flow conditions, discharge, flume slope, and water depth were adjusted so that the deflected plants were just submerged (see Fig. 1) and that the average water surface slope was identical to bed slope in the test section. Mean flow velocities, calculated by the continuity equation (neglecting vegetation volume) varied between $u_m = 0.11-0.78$ m/s and the water depth varied between h = 0.25 m- 0.20 m. It is worth mentioning that the flow depth exceeds the blossom of the plant at the top of the element by approximately 2 cm because a part of the upper leaves were bent towards and penetrated through the water surface. As a consequence, the water depth was increased to ensure that the top parts of the plans were just submerged.

3. RESULTS AND DISCUSSION

In the following we present data that enables the investigation of the spatial variability of the drag forces and the performance of existing approaches for the determination of flow resistance in canopies.

3.1 Drag Forces

Fig. 3 shows the time averaged drag forces measured for the staggered (full symbols) and inline (open symbols) setup with the lowest density (30 x 30 cm) for various mean flow velocities. The Fig. reveals a large variability of the measured drag forces for both arrangements. For selected plants, the relationship between FD and um is shown in Fig. 4 for experimental series 30S (for visual clarity only the drag forces measured by DFS01 - DFS05 are shown). Fig. 4 shows that the individual relationships between FD and *um* were approximately linear although some scatter was observed. The gradient of the straight lines varied between the elements and this variation was associated with plant deformation and sheltering effects. In fact, for the flexible elements used in this study the maximum variation of the drag force within the canopy corresponded to more than 50%. Visual observations showed that the vegetation elements did behave and deform differently although the individual elements were identical and great care was given to plant arrangement during the experimental setup to ensure that all canopy elements were aligned similarly.

Fig. 3: Spatial variability of drag forces exemplarily shown for setups 30S (full symbols) and 30L (open symbols). Each circle indicates a DFS element; lines indicate spatially averaged drag forces.

Despite the observed spatial variability of drag forces, the spatially averaged drag force $\langle FD \rangle$ followed a linear relationship with mean flow velocity (solid and broken lines in Fig. 3).

6

The linear relationship was also confirmed by the results of our further measurements shown in Fig. 5.

The linear relationship between FD and u_m is generally associated with plant flexibility and deformation. In this context it is worth mentioning that the linear extrapolation of the FD - u_m relationship towards the origin would result in negative drag forces for low velocities. This is a strong indicator that the linear relationship is only valid for larger flow velocities. This was also observed by Oplatka (1998) reporting that for very low flow velocities the FD - u_m relationship of flexible single vegetation elements follows a squared relationship (i.e., $FD \sim u^2$). In this case, the flow force is too low to deform the plants and hence the plants act as rigid bodies. The influence of plant deformation mechanisms on the FD - u_m relation- ship has also been highlighted in Schoneboom & Aberle (2009).

Our data further suggests that the drag forces were consistently larger for the staggered than for the in-line pattern (Fig. 5). It is also interesting to note that the FD - um relationships collapsed on single lines for the staggered and in-line setup.

3.2 Bed Shear Stress.

Fig. 6 shows the bed shear stress τ_0' , calculated using Eq (1), as a function of total stress ρghS . The Fig. shows that the bed shear stress increased with increasing total stress for both vegetation patterns and that the absolute value of bed shear stress depended on the vegetation spacing. For comparable total stresses, bed shear stress was, in general, largest for the lowest density and lowest for the densest canopy.

A closer analysis of the bed shear stress revealed that the minimum and maximum contribution of bed shear stress to total stress corresponded to 5% and 25%, respectively. The relatively large contribution of the bed shear stress to the total stress suggests that bed friction should not be neglected when

investigating vegetated flows. A similar conclusion has been drawn by Righetti (2008) who found that the plant drag per unit bed surface is of the same order of magnitude as the shear resistance at the bed.

Fig. 6: Bed shear stress as a function of total stress.

3.3 Flow Resistance

It is common practice to express flow resistance in terms of the Darcy-Weisbach friction factor f. For vegetated flows there is the need to distinguish be- tween surface friction and form drag using the superposition principle f = f' + f'' (Yen, 2002). The friction factor representing form drag f'' is defined as

$$\frac{f''}{8} = \frac{\langle F_D \rangle}{\rho u_m^2 a_x a_y} \tag{3}$$

And the friction factor representing bed friction f' can be calculated using the information on bed shear stress τ_0' according to

$$f' = \frac{8\tau_0'}{\rho u_m^2} \tag{4}$$

Existing approaches for the determination of the total flow resistance are based on the assumption that bed friction can be estimated using standard flow resistance formulae such as the Strickler relation (Huthoff, 2007). Using our bed shear stress estimates it is possible to test the performance of these approaches. In the following, we focus on the log-law and the Strickler relation which are defined as:

$$\sqrt{\frac{8}{f'}} = \frac{1}{K} \ln \frac{h}{k} + 6.27$$
(5)

And

$$\sqrt{\frac{8}{f'}} = 16\sqrt{2} \left(\frac{h}{k}\right)^{\frac{1}{6}} \tag{6}$$

Respectively. In these equations, k defines the Karman constant (k=0.4) and k the geometric roughness height (k=0.003m).

Fig. 7 shows the measured and calculated f'-values (using Eqs 5 and 6) as a function of the relative submergence h/k. The Fig. shows that both the Strickler formulation (Eq. 6) and the log-law (Eq. 5) underestimate f'. At a first glance, this difference may be surprising. However, the overall resistance causing the water level h is composed of form drag and surface friction. Resistance laws such as the log-law are based on the assumption of 2D-flow conditions with surface friction as predominant source of energy loss and the existence of a logarithmic velocity profile. Such flow conditions do not prevail in vegetated flows where form drag plays an important role. For example, considering a 2D-flow where surface roughness is the only source of friction the application of Eq. (5) yields, for a given water depth, a certain discharge. If additional form roughness is present the discharge is reduced for the same water depth. Thus, as the bed roughness is not the only source of energy loss, Eq. (5) will not give the correct friction factor. In fact, our results showed that the effect of bed friction is generally underestimated using Eqs. (5) and (6).

Furthermore, our results indicated that surface friction increased with increasing relative submergence. On the other hand, according to equations (5) and (6), the friction factor f' decreases with increasing water depth for 2D-flow conditions. This somehow unexpected result shows the need for further investigations focusing on the complex interaction between near bed flow, surface structure and form drag. In fact, it is not yet clear in as much plant deformation and plant morphology affects the results shown in Fig. 7.

Fig. 7: Observed and calculated surface friction as a function of relative submergence.

As indicated by Eq. (3), form drag is often expressed in terms of f". Our drag force data allowed the direct estimation of f" while in other studies formulations for f" have been derived neglecting bed surface friction. Besides, relationships

derived for rigid rod canopies are not directly applicable to canopies composed of flexible elements. In the literature, only a few approaches are found which can be used to assess the form drag friction factor f " taking into account plant specific parameters. For example, Järvelä (2006) reported f " - um relationships that can be well described by a power law. The approach of Järvelä (2004) is relatively straightforward and can be calibrated using experimental data:

$$f'' = 4C_{dx}LAI\left(\frac{U_m}{U_x}\right)^x \frac{h_p}{h}$$
(7)

with $Cd\chi$ = species specific drag coefficient, LAI = leaf area index, $U\chi$ = lowest mean flow velocity used when determining χ , χ = species specific vegetation parameter, and h_p = deflected plant height.

Fig. 8 shows the friction factor f " normalized with leaf area index (LAI) as a function of $U/U\chi$. The shape of the curves are similar to the shape of the f " - u_m relationships shown in Järvelä (2006) for natural flexible vegetation. Our data showed distinct differences between the in-line and staggered setup which are associated with the aforementioned differences in drag forces (Fig. 5). Therefore, calibrating Eq.(7) resulted in $C_{dx} = 0.40$, x = -0.875, and $U_x = 0.13$ m/s for the in line setup, respectively. These values are in the same order of magnitude as the values reported by Järvelä (2006) for natural vegetation.

Deriving Eq. (7), Järvelä (2004) assumed that the influence of plant arrangement in case of dense vegetation is insignificant but did not provide an exact value for the density limit. Furthermore, Järvelä (2002) reported that different spacing for the same number of leafless willows with grasses did not have a significant effect on the friction factor in his experiments. The same was found in our study with relatively sparse distributions.

Fig. 8: Friction factor f''/LAI as a function of U_{III}/U_X for staggered (full symbols) and in-line arrangement (open symbols).

4. CONCLUSION

The results presented in this paper highlight the importance of bed surface friction as well as vegetation pattern for the estimation of flow resistance in riparian zones. Using data from specifically designed experiments the spatial variability of drag forces exerted by flexible vegetation elements within a canopy was shown. In accordance with the findings for single flexible elements it was found that the spatially averaged drag force in- creases linearly with flow velocity and that the relationships for individual plants are also almost li- near. However, the gradients for these individual relationships varied considerably indicating the complex flow structure within flexible canopies.

The results further revealed an influence of the plant pattern on both drag forces and flow resistance. It was found that flow resistance and drag forces exerted by the vegetation elements were larger for the staggered than for the in linepattern. Similarly, it was found that bed shear stress is in general larger for the in line setup than for the staggered setup. In the experiments, bed surface friction was not negligible, as the maximum contribution of bed friction to total resistance was up to 25%. The analysis of bed friction also revealed that existing approaches underestimate bed friction.

5. ACKNOWLEDGEMENT.

The work presented in this paper would not been possible without the support that I received from my supervisor Prof. Kaushik Bandyopadhyay. I am thankful to the Department of Construction Engineering, Jadavpur University for providing me with the facilities needed for the completion of my project.

REFERENCES

- [1] Huthoff, F. 2007. Modeling hydraulic resistance of floodplain vegetation. PhD thesis, University of Twente, Enschede, The Netherlands.
- [2] Järvelä, J. 2002. Flow resistance of flexible and stiff vegetation: a flume study with natural plants. *J. Hydrol.* 269, 44-54.
- [3] Järvelä, J. 2004. Determination of flow resistance caused by non-submerged woody vegetation. Int. J. River Basin Manag. 2(1), 61–70.
- [4] Järvelä, J. 2006. Vegetative flow resistance: characterization of woody plants for modeling applications. In: R. Graham, Proc. of the World Water and Environmental Resources Congress 2006. 21-25 May 2006, Omaha, USA, papers on CD-Rom.
- [5] Oplatka, M. 1998, Hydrologie und Glaziologie, No.156, ETH Zürich, Switzerland.
- [6] Petryk, S., Bosmajian, G. 1975. Analysis of flow through vegetation. J. Hydraul. Div., 101(HY7), 871-884.
- [7] Righetti, M. 2008. Flow analysis in a channel with flexible vegetation using double-averaging method. Acta Geophysica, 56(3), 801-823.
- [8] Schoneboom, T., Aberle, J. 2009. Influence of foliage on drag force of flexible vegetation. 33rd IAHR Congress, 9-14 August 2009, Vancouver, Canada. Papers on CD- Rom.
- [9] Schoneboom, T., Aberle, J., Wilson, C.A.M.E., Dittrich, A. (2008). "Drag force measurements of vegetation ele- ments." ICHE 2008, Nagoya, Japan, Papers on CD- Rom.
- [10] Tanino, Y., Nepf, H.M. 2008. Laboratory investigation of mean drag in a random array of rigid, emergent cylin- ders. *J. Hydraul. Eng.*, 134(1), 34-41.
- [11] Yen, B. C. 2002. Open Channel Flow Resistance. J. Hydraul. Eng., 128(1), 20-39.